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1 Introduction

This report describes various asymptotic methods found in literature that
have been applied to the analysis of scattering by a dielectric wedge, as the
final project for the graduate course Advanced Electromagnetic Diffraction
and Radiation. For high-frequency methods, such as geometrical theory of
diffraction (GTD), it is crucial to find a uniform expression for the diffracted
field which compensates for the discontinuity on the optical boundaries caused
by the reflected and refracted fields. Unfortunately, it appears that no exact
solutions have been found to date for the diffraction by dielectric wedges of
arbitrary apex angle and dielectric constant. In the literature, one may observe
a dramatic history where claims were made to have solved the problem but
turned out immediately afterwards to be erroneous or virtually useless. The
solution to the problem, as is different from that of the conducting wedges,
is hindered by the fact that wave can penetrate into the dielectric region and
one needs to match the boundary conditions on the interfaces between the
wedge and the free-space. Since the wavenumbers are different in the two
different regions, one-by-one mode matching by analytical methods is almost
impossible for arbitrary apex angle. In spite of these difficulties, there have
been successful analyses which contribute to the progress in this research topic
by pointing out promising directions as well as casting physical insights into
the problem. The existing approaches can be characterized by either trying to
provide analytical solutions as approximate solution to the original problem
under certain assumptions, or trying to solve the problem in an exact sense
using combined analytical-numerical methods.

Instead of giving an exhaustive account for the advances made in this
field, this report only describes several pronounced attempts, characterized



by different methods. These methods include old-fashioned modal analysis
[1], null-field method [2], physical optics (PO) method [3], and the newly-
developed integral-transform methods [5]. A general review of the dielectric
wedge diffraction problem is available in G. James’s book [6], which is the
starting point of this project. Computer codes are also implemented for some
of the schemes for better understanding of the subject.

2 General Problem Description

The geometry and the related symbols are defined in Fig. 1. The Ω1 and
Ω2 denote the dielectric and free-space regions, respectively. The Γ1 and Γ2

denote the two edges of the wedge. The symmetry axis of the wedge coincides
with the x-axis and the half angle of wedge apex is denoted by χ. The wedge
is illuminated by either a plane wave from outside with incident angle φ0, or
by a line source positioned inside or outside the wedge.
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Figure 1: Geometry of dielectric wedge with plane wave incidence.

3 Mode Matching

In [1], the traditional modal analysis is applied to the wedge diffraction prob-
lem. The key point is to choose appropriate wavefunctions to represent the
exact field, especially near the apex of the wedge.

The wave equations for the longitudinal field component in Ω1 and Ω2 are

∇2Φ + ν2k2Φ = 0 in Ω1 (1)

∇2Ψ + k2Ψ = 0 in Ω2 (2)



and the boundary conditions to be satisfied are

Φ = Ψ on Γ1, Γ2. (3)

∂Φ/∂φ = ∂Ψ/∂φ on Γ1, Γ2 (4)

To simplify the analysis, a line source is placed on the symmetry axis of
the wedge, say Q(ρ0, 0), generating out-going cylindrical wave represented by
Hankel function of second kind. Accordingly, we can separate Φ into the
field produced by the source Φe and the reflected (refracted) field Φr so that
Φ = Φe + Φr. If we are only interested in the ρ < ρ0 region, Φe can be
represented by the bessel functions

Φe(ρ, φ) =
∞∑

n=1

anΦe
n(ρ, φ) (5)

Φe
n(ρ, φ) = Jn(νkρ) sin(n|φ|), ρ < ρ0 (6)

The wavefunctions (expansion functions) for Φr and Ψ need to be determined.
One may still use bessel functions, but difficulty arises when one tries to match
the boundary condition for bessel functions with different argument (kρ and
νkρ respectively). This difficulty can be ameliorated by using the following
equality:

Jα(νζ) =
∞∑

n=0

Fn(α, ν)Jα+2n(ζ), α 6= I (7)

where

Fn(α, ν) = (−1)nνα+2n(α + 2n)
∞∑

m=1

(−1)mν−2mΓ(α + 2n−m)

m!(n−m)!Γ(α + n−m + 1)
, (8)

where Γ is the gamma function. Equation (7) and (8) are the crux of the
proposed method. By inspecting (7) and (8) and invoking the symmetry of
the geometry, one may find the appropriate forms of Φr

n and Ψn as

Φr
n(ρ, φ) =

∞∑

m=−m1

AmJn+2m(νkρ) cos((n + 2m)φ); (9)

Ψn(ρ, φ) =
∞∑

m=−m2

BmJn+2m(kρ) cos((n + 2m)(π − φ)); (10)

As a result, the wavefunction for the total field inside wedge region becomes

Φn(ρ, φ) =
∞∑

m=0

Fm(n, ν)Jn+2m(kρ) sin(n|φ|)

+
∞∑

m=−m1

∞∑

q=0

AmFq(n + 2m, ν)Jn+2m+2q(kρ) cos((n + 2m)φ).(11)

Now, the arguments of the bessel functions in (10) and (11) become identical,
which significantly simplifies the modal analysis. The coefficients Am and Bm



can be therefore determined by substituting (10) and (11) into the boundary
conditions (3) and (4). This will result in a coupled series-equation regarding
Am and Bm which can be solved iteratively [1].

The method has the advantage that the formulae used to find the expan-
sion coefficients are computationally inexpensive. Moreover, the wavefunctions
used to expand the fields have clear physical meaning and are capable of mod-
eling the field in the vicinity of the apex of a dielectric wedge.

4 Null-Field Method

In [2], a similar scheme is employed in the analysis of dielectric wedge. Atten-
tion is paid to the field behavior near the apex of the wedge. In the context
of GTD, it is conventional to split the total field as

u(ρ, φ) = u0(ρ, φ) + ur(ρ, φ) + ud(ρ, φ) (12)

where r stands for the reflected field outside the wedge and the refracted field
inside the wedge and d stands for the diffracted field. For plane wave incidence,

u0(ρ, φ) = exp[−jkρ cos(φ + φ0)]. (13)

Given (13), the reflected and refracted wave can be written accordingly , mak-
ing use of Fresnel reflection and transmission coefficients for infinite planar
interfaces. For an arbitrary observation point P outside the wedge, the fol-
lowing integral equation is valid:

h(P ) = −
∫

Γ1,Γ2

[G0(P, Q)∂u(Q)− u(Q)∂G0(P, Q)] dr′

= −u0(ρ, φ) in Ω1

= ur(ρ, φ) + ud(ρ, φ) in Ω2 (14)

where Q is the observation point on one of the two edges of the wedge and
G0(P, Q) is the 2D Green’s function for free-space. The integral equation
can be derived from equivalence principle by relating u(ρ, φ) to the equivalent
magnetic current and ∂u(ρ, φ) to the equivalent electric current on Γ1 and Γ2.
The effect of these equivalent currents is to extinguish the incident field inside
the wedge region, thus producing zero total field (null-field) in Ω1.

To solve the integral equation (14), it is convenient to first expand the field
with wavefunctions. Using wave transformation, u0 can be written as

u0(ρ, φ) =
∞∑

n=0

εn(−j)nJn(kρ) cos[n(φ + φ0)] (15)

where εn = 1 for n = 0 and εn = 2 for n > 0. The appropriate form for
ud is unknown, but it is assumed that ud also takes similar form as u0 for
observation point within an adequate distance from the apex. That is

u(ρ, φ) =
∞∑

n=0

A(m)
n Jn(kρ) cos[nφ + Φ(m)

n ] φm1 < φ < φm2 (16)



where m denotes the angular sectors defined by the optical boundaries, which
lie on φ = φm1 and φ = φm2 for sector m. The assumption is supported by
the fact that the total field should be analytic at the apex of the wedge and
that the diffracted field should be discontinuous on the optical boundaries.
The A(m)

n and the Φ(m)
n are unknown constants to be determined from the

continuity conditions applied on the optical boundaries.
Substituting (15) and (16) into (14) and equating the coefficients of each

Jn(kρ) terms, one is able to obtain

εn(−j)n cos[n(φ + φ0)] = −
∞∑

m=0

Bn,m cos(mφ + Ψn,m). (17)

Equation (17) constitutes, after truncation, a linear system of equations that
can be used to solve the unknown coefficients. After Bn,m and Ψn,m are solved
numerically, coefficients A(m)

n and Φ(m)
n can be found and ud can be recovered.

The relation between A(m)
n and Bn,m, Φ(m)

n and Ψn,m can be found through
substituting corresponding expressions into (14). Note that the ud found by
(16) is only valid for near field. However, the far field pattern can be readily
calculated form the standard asymptotic evaluation of (14), with the total
field replaced by the series representation. Hence, a global solution can be
obtained.

It is also noteworthy that when reflected or refracted wave impinges upon
the face opposite that at which reflection or refraction occurs, multiple reflec-
tion or refraction will takes place. In these cases, it is crucial to separate the
multi-reflected or multi-refracted wave from the diffracted wave properly to
obtain satisfactory numerical convergence.

5 Physical Optics Solution

Similar to the null-field method, the method described in [3] starts with the
integral equation (14). Let A(α, β) denote the Fourier transform of the total
field u(x, y) inside the wedge. A spectral-domain expression for the integral
equation is

u(x, y) = F−1{A(α, β)} (18)

A(α, β) = − 1

α2 + β2 − k2
d

·{
∫ ∞

0
[−jβu(x, 0) + ∂u(x, 0)/∂y] ejαx

+
∫ ∞

0
[−jβu(0, y) + ∂u(0, y)/∂x] ejβy} (19)

The boundary field u(x, 0) and u(0, y) may be obtained by assuming wedge
interfaces are infinite planes and applying Fresnel reflection and transmission



formulae. After substituting the PO approximation of the boundary fields into
(19), A(α, β) can be approximated as

Ap(α, β) = − 1

α2 + β2 − k2
d

{Tx
β + kv

√
ε− cos2 φ0

α− kv cos φ0

+ Ty

α + kv

√
ε− sin2 φ0

β − kv sin φ0

}
(20)

where kv and kd are the wavenumbers in the free-space and dielectric, respec-
tively. The total field can be obtained by applying inverse Fourier transform
to Ap, yielding

up(x, y) = F−1{Ap(α, β)} = Jx(x, y) + Jy(x, y) in Ω1 (21)

up(x, y) = u0 − F−1{α2 + β2 − k2
d

α2 + β2 − k2
v

Ap(α, β)} = u0 − Ix(x, y)− Iy(x, y) in Ω2

(22)
Each term in (21) and (22) can be written as an integration over the complex
angular spectrum plane. After singling out the contribution from the pole
singularity, the integration can be written as, Ix for example,

Ix(x, y) = −H(2π − φ0, 2π)Rxe
−jkv(x cos φ0−y sin φ0) (23)

−j/(4π)
∫

SDP
Tx
− sin w +

√
ε− cos2 φ0

cos w − cos φ0

e−jkvρ cos(w+φ)dw. (24)

The first term in (24) in identified as the reflected wave due to the x = 0 edge
and is denoted as −ug1. The other terms Iy, Jx, and Jy can be expressed in
a similar way. Consequently, the total field can be written as the following
summation:

up(x, y) = u0(x, y) +
4∑

i=1

ugi(x, y) + v1,2(x, y) (25)

where ug1 and ug2 are the reflected waves and ug3 and ug4 are the refracted
waves. The v1 and v2 are diffracted waves in dielectric and free-space, respec-
tively. They are given as steepest descent path (SDP) integrals

v1(x, y) = j/(4π)
∫

SDP
f1(w; φ0)e

−jkvρ cos(w−φ)dw (26)

v2(x, y) = −j/(4π)
∫

SDP
f2(w; φ0)e

−jkdρ cos(w−φ)dw (27)

where

f1(w; φ0) = Tx
sin w +

√
ε− cos2 φ0

cos w − cos φ0

+ Ty

cos w +
√

ε− sin2 φ0

sin w − sin φ0

(28)

f2(w; φ0) = Tx

√
ε sin w +

√
ε− cos2 φ0√

ε cos w − cos φ0

+ Ty

√
ε cos w +

√
ε− sin2 φ0√

ε sin w − sin φ0

(29)



One may realize that f1 and f2 have singularities at π − φ0, 2π − φ0 and
φ1 = cos−1(cos φ0/

√
ε), φ2 = sin−1(sin φ0/

√
ε), respectively. There four angles

are exactly where the four optical boundaries (transition region) are located.
For large ρ away from the transition regions, v1 and v2 can be evaluated
asymptotically as

v1,2(ρ, φ) ' ±1/2
e−jkv,dρ−jπ/4

√
2kv,dρ

f1,2(φ; φ0) (30)

The above analysis completes the PO solution of the scattering problem. How-
ever, one may refine the approximate solution by adding a correction term to
AP ; that is

Aa(α, β) = Ap(α, β) + Ac(α, β) (31)

The actual field Aa satisfies the null-field condition in an exact way. This
provides equations from which the correction field Ac can be solved. The
equations are written in the spectral domain as

F−1Ac(α, β) = F−1Ap(α, β) = −v2 in Ω2 (32)

F−1{α2 + β2 − k2
d

α2 + β2 − k2
v

Ac(α, β)} = u0 − F−1{α2 + β2 − k2
d

α2 + β2 − k2
v

Ap(α, β)} = v1 in Ω1

(33)
Noting that 1/(α2 + β2− k2

d) is the Fourier transform of the Green’s function,
one may introduce a virtual source function S(α, β) into (32) and (33) so that

F−1{ S(α, β)

α2 + β2 − k2
d

} = −v2 in Ω2 (34)

F−1{ S(α, β)

α2 + β2 − k2
v

} = v1 in Ω1. (35)

Hence, the diffracted field v1 and v2 can be viewed as the field produced by the
virtual sources towards the dielectric and the free-space regions, respectively.
It is reasonable to assume that the virtual source is located on the tip of the
wedge and generates cylindrical waves outwards. Then the source may be
represented by two-dimensional multipole series as

s(x, y) =
∞∑

m=0

∞∑

n=0

amnδ
(m)(x)δ(n)(y) (36)

Since v1 and v2 are analytical within Ω1 and Ω2 respectively, they can be used
to determine the multipole expansion coefficients. Substitution of (36) into
(34) and (35) gives a dual series equation for amn:

∑
m,n

amn(−jkv cos w)m(−jkv sin w)n = f1(w; φ0) inΩ1 (37)

∑
m,n

amn(−jkd cos w)m(−jkd sin w)n = f2(w; φ0) inΩ2 (38)



After amn is solved numerically form the above equation, the correction diffracted
field pattern g1(w; φ0) and g2(w; φ0) can be constructed from (34) and (35)
for the entire space. Then they are added to the PO diffracted field pattern
f1(w; φ0) and f2(w; φ0) to obtain the corrected field pattern which are used
in (30) instead of f1(w; φ0) and f2(w; φ0) to calculate the corrected far field.
The corrected field still has singularity on the optical boundaries. On those
transition regions, one need to use Fresnel integrals to obtain a uniformly valid
result, as indicated in [3].

In order to have a better understanding of the method, a computer code
is written to implement the PO solution and the numerical correction. Figure
2 shows the total field amplitude around a dielectric wedge with symmetrical
plane wave incidence (φ0 = 180o). The observation point is fixed at ρ = 2λ
away from the origin and the observation angle φ varies from 0o to 360o.
The dielectric wedge has a apex angle of π/2 and a relative permittivity of
εr = 2.0. The dashed line denotes the solution before numerical correction and
the solid line denotes the solution after numerical correction. It is observed
that the correction is most significant inside the dielectric region, where the
two refraction boundaries are close to each other. The corrected formulation
assures the vanishing of the diffracted field on the dielectric interface (φ = 0o

and φ = 90o), thus guarantees that the continuity condition on the dielectric
interface is satisfied, as can be observed in Fig. 2. Figure 3 shows the total
field amplitude around the same dielectric wedge with the observation point
fixed to be ρ = 5λ away from the origin. As one may expect, more rapid field
amplitude variation is observed in Fig. 3. There is a peak in the field amplitude
inside the dielectric wedge, as the result of interference of two refracted waves.

The method can be extended to dielectric wedge with arbitrary angle [7],
[8]. However, the choice of right angle helps to simplify the problem by re-
ducing the PO fields into four distinct terms. For an arbitrary-angled wedge
problem, multiple reflection and refraction may occur and the resultant PO
fields are generally not only four terms. However, the extension to wedges
with arbitrary angles are straightforward, given the framework of [3]. Apart
from theoretical formulations, there are still numerical issues regarding the
solving of the monopole coefficients. For a dielectric wedge with large dielec-
tric constant, one needs to add more expansion terms to model the abrupt
change from free-space to dielectric. However, the linear system of equations
represented by (37) and (38) are typically ill-conditioned. This is even worse
when one tries to keep more expansion terms in the infinite summation. This
implies that, without special treatment, the proposed method may become
less accurate for dielectric wedge with large refractive index.
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Figure 2: Field amplitude for the right angle dielectric wedge. ρ = 2λ

6 Integral-Transform Method - Isorefractive

Wedge

An isorefractive wedge is a dielectric wedge whose isotropic material has a
refractive index equal to that of the surrounding medium. Or more specifically,
εrµr = 1.0. This implies that the wavenumbers are identical inside and outside
the wedge. Mathematically, this simplified the analysis significantly since the
radial wavefunctions have the same argument inside and outside the wedge,
making possible one-to-one mode matching of the field expansions. Exact
solutions to this particular case are available. In the work represented by [4]
and [5], an integral-transform method is employed to obtain a uniform and
exact solution.

From Maxwell’s equations and Green’s theorem, one may arrive at integral
equations regarding the total field which are given by

uS
i (R)− κuS(R) = η

∫ ∞

0+
L(R, r)uS(r)dr (39)

uA
i (R)− κuA(R) = −η

∫ ∞

0+
L(R, r)uA(r)dr (40)

where η = 1− ε and κ = 1−η/2. The superscripts S and A denote symmetric
and antisymmetric components of the total field, respectively. The integral
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Figure 3: Field amplitude for the right angle dielectric wedge. ρ = 5λ

kernel L is given by

L(R, r) =
−jk

4
R sin(2χ)

H
(2)
1 (k

√
R2 + r2 − 2rR cos(2χ))

√
R2 + r2 − 2rR cos(2χ)

. (41)

In order to solve (41) analytically, the Kantorovich-Lebedev transform is used.
The transform pair is given by

ũ(ν) =
∫ ∞

0
u(r)H(2)

ν (kr)r−1dr (42)

ũ(r) = −1/2
∫ j∞

−j∞
νJν(kr)ũ(ν)dν (43)

Also, from an integral equation formulation of Gegenbauer’s addition theorem
one may rewrite L(R, r) as

L(R, r) = 1/r
∫ j∞

0
ψ(ν, 2χ)H(2)

ν (kR)H(2)
ν (kr)dν (44)

where

ψ(ν, Ω) =
−j

4
νe−jπν sin(ν(π − Ω)). (45)



Using the inverse Kantorovich-Lebedev transform (43) and (44), the integral
equations (39) and (40) can be written as

∫ j∞

0
H(2)

ν (kR)ρ(ν)[ũi(ν)− κũ(ν)]dν

= ±η
∫ j∞

0
H(2)

ν (kR)ψ(ν, 2χ)ũ(ν)dν (46)

where ρ(ν) = ν(e−2jπν − 1)/4. Since H(2)
ν (kR) are independent functions, the

above equality requires that

ρ(ν)[ũi(ν)− κũ(ν)] = ψ(ν, 2χ)ũ(ν). (47)

This equation relates the total field to the incident field in the Kantorovich-
Lebedev domain. Applying the inverse Kantorovich-Lebedev transform, one
is able to find the total field u(x, y) in the spacial domain. The final result for
a plane wave incident upon an isorefractive wedge is provided by the authors
and turns out to be represented by a series of Bessel functions [4]. The field
inside the wedge, for example, is given by

uS(ρ, φ) = 2π(Λ + 1)
∞∑

0+

Jsn(kρ)e−jπsn/2 cos(snφ) cos[sn(π − φ0)]Ξ
S(sn) (48)

uA(ρ, φ) = −2π(Λ+1)
∞∑

1

Jan(kρ)e−jπan/2 cos(anφ) cos[an(π−φ0)]Ξ
S(an) (49)

where Λ = (1− ε)/(1 + ε) and

ΞS,A(ν) =
1

π cos(νπ)± Λ(π − Ω) cos[ν(π − Ω)]
(50)

The sn and an are Greenburg poles (symmetric and antisymmetric pole, re-
spectively). When χ = π/2 where the dielectric wedge becomes an infinite
plane, or when ε = 1.0, the Greenburg poles take integer values. Therefore
the total field is represented by a series of bessel functions of integer order, as
indicated by the plane-wave-to-cylindrical-wave transform (15). For an isore-
fractive wedge with arbitrary χ and ε, the Greenburg poles generally contain
both integer and fractional values. All Greenburg poles contribute to the so-
lution of the problem, but only the smallest ones (s1 and a1) induce field
singularity [4].

A computer code is written to implement the global field solution given
by [4], as a demonstration of the proposed method. The contour plot for the
field amplitude is shown in Fig. 4 for φ0 = 180o (symmetrically incidence)
and Fig. 5 for φ0 = −90o. In both cases, the dielectric wedge has an angle
of π/2 and relative permittivity εr = 2.0. The contributions from individual
series terms are also plotted (not shown in the report) and reveal decaying
magnitude and increasing spacial variation with larger term index.
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Figure 4: Contour plot of the field amplitude. φ0 = 0o

7 Conclusion

This report reviews several papers on the analytical analysis of diffraction by
a dielectric wedge. While a complete solution of the problems is not found
in literature, approximate results are provided and extension to numerical
methods are made. In the modal analysis [1], fields inside and outside the
dielectric wedge is expanded with bessel functions and boundary condition is
matched for different modes. The mode matching process is facilitated by a
formula that relates the bessel functions of different arguments. The expan-
sion coefficients are then solved iteratively from a coupled series-equation. In
the work by Yeo et al. [2], the entire spacial domain is divided into several
sectors by the optical boundaries, and bessel functions are used to expand
the field within each sector. The expansion coefficients are determined from
the continuity conditions on the optical boundaries. Joo et al. formulate a
hybrid method that combines the PO solution with a numerical improvement
[3]. First an integral equation is solved in the spectral domain. Then the total
field is obtained by applying the inverse Fourier transform, which results in an
integration over the complex angular spectrum domain. The singularity con-
tribution to the integration is separated and turns out to be the reflected (or
refracted) fields. The rest of the integration contributes to the diffracted field.
A more rigorous solution can be obtained by adding a correction field to the
PO field. A spectral-domain equation is derived for the correction field and it
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Figure 5: Contour plot of the field amplitude. φ0 = −90o

is shown that the correction fields are equivalently cylindrical waves radiated
by multipole sources located on the tip of the wedge. The multipole expansion
coefficients are solve numerically and the correction field can be recovered ac-
cordingly. Finally, a relatively new paper [4] is reviewed on the scattering by
isorefractive wedges. For this special type of dielectric wedge, exact analytical
solution can be obtained via the Kantorovich-Lebedev transform. According
to the paper, a uniform solution can be obtained for the entire space, expressed
as a summation of bessel functions whose order are determined by Greenburg
poles.

Through these analytical methods, better knowledge is gained for the re-
flection, refraction, and diffraction by a dielectric wedge, especially the field
behavior near the apex of the wedge. New features, such as the interference of
refracted waves inside the wedge, are exhibited, which are not observed in the
case of conducting wedges. These analytical or combined analytical-numerical
solutions are also valuable in providing reliable references for a comprehensive
numerical analysis.
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